Multilinear generating functions for Charlier polynomials
نویسندگان
چکیده
Charlier configurations provide a combinatorial model for Charlier polynomials. We use this model to give a combinatorial proof of a multilinear generating function for Charlier polynomials. As special cases of the multilinear generating function, we obtain the bilinear generating function for Charlier polynomials and formulas for derangements.
منابع مشابه
Classical Orthogonal Polynomials as Moments
We show that the Meixner, Pollaczek, Meixner-Pollaczek and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials. Running Title: Generating Functions
متن کاملMultivariable Construction of Extended Jacobi Matrix Polynomials
The main aim of this paper is to construct a multivariable extension with the help of the extended Jacobi matrix polynomials (EJMPs). Generating matrix functions and recurrence relations satisfied by these multivariable matrix polynomials are derived. Furthermore, general families of multilinear and multilateral generating matrix functions are obtained and their applications are presented.
متن کاملOn composition of generating functions
In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...
متن کاملTutte polynomials of wheels via generating functions
We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.
متن کاملSome Bilateral Generating Functions Involving the Chan-chyan-srivastava Polynomials and Some General Classes of Multivariable Polynomials
Abstract. Recently, Liu et al. [Bilateral generating functions for the Chan-Chyan-Srivastava polynomials and the generalized Lauricella function, Integral Transform Spec. Funct. 23 (2012), no. 7, 539–549] investigated, in several interesting papers, some various families of bilateral generating functions involving the Chan-Chyan-Srivastava polynomials. The aim of this present paper is to obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008